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ABSTRACT  
Numerous methods exist to perform hyperspectral target detection. Application of these algorithms often 
requires the data to be atmospherically corrected. Detection for longwave infrared data typically requires 
surface temperature estimates as well. This work compares the relative robustness of various target 
detection algorithms with respect to atmospheric compensation and target temperature uncertainty. 
Specifically, the adaptive coherence estimator and spectral matched filter will be compared with subspace 
detectors for various methods of atmospheric compensation and temperature-emissivity separation. 
Comparison is performed using both daytime and nighttime longwave infrared hyperspectral data collected 
at various altitudes for various target materials.. 

1. INTRODUCTION 

Longwave infrared (LWIR) hyperspectral imaging (HSI) has shown utility in detecting minerals and gaseous 
effluents with spectral features in the 7-14µm wavelength range. These sensors have the advantage of 
operating in the day or at night because they measure emitted and reflected thermal energy instead of 
sunlight. The sensor-measured radiance and surface emissivity must be known or estimated to perform target 
detection or material identification. 

Processing of LWIR HSI data often handles the problems of atmospheric compensation (AC) and emissivity 
estimation separately. The majority of AC algorithms utilize either in-scene methods1, 2 or radiative transfer 
models3–5 to estimate path transmission, upwelling radiance, and downwelling radiance (TUD) associated 
with the data. Upon obtaining atmospheric estimates, one can perform temperature-emissivity separation 
(TES) on the data to obtain emissivity estimates for use in sub- sequent matched target detection 
exploitation. 

Target detection algorithms are applied in conjunction AC and TES to find materials of interest within a 
scene. Two common algorithms referred to as the adaptive coherence estimator (ACE) and spectral matched 
filter (SMF) can be applied in either the emissivity domain or the radiance domain.6–8 Other subspace 
detection algorithms have been developed for application in the radiance domain to account for 
target/background variability and to alleviate the need to estimate emissivity for the entire data cube. 

This research examines various combinations of AC, TES, and detection algorithms to assess robustness 
over a range of data cubes collected at different altitudes, cloud conditions and day/night for a number of 
different target materials. Section 2 discusses the airborne data used for the study as well as the specific AC, 
TES, and detection algorithms applied. Section 3 provides the detection results in terms of receiver operating 
characteristic (ROC) curves, signal-to-clutter ratio (SCR) and false alarms 

2. METHODOLOGY 

The LWIR HSI data used for this study was collected using the Spatially Enhanced Broadband Array 
Spectrograph (SEBASS) sensor mounted on an aircraft operating at altitudes between 1500’ to 9000’ above 
ground level (AGL).9 Five targets are chosen for this analysis with varying levels of spectral signature 
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strength. These targets correspond to a commercial foamboard material, a low emissivity paint (Low-E), and 
a medium emissivity paint (Mid-E), glass, and sandpaper with their measured spectral emissivity shown in 
Figure 1. 

Table 1:  Data summary 

Datacube Sky condition Time-of-day Altitude (AGL) 
1 Clear Afternoon 9000’ 
2 Clear Afternoon 3000’ 
3 Clear Afternoon 1500’ 
4 Partly cloudy Morning 4000’ 
5 Partly cloudy Morning 6000’ 
6 Clear sky Nighttime 3000’ 
7 Clear sky Nighttime 1500’ 
8 Cloudy Afternoon 1500’ 
9 Cloudy Afternoon 3000’ 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 1: Measured target spectral emissivity 

A simple model for sensor-reaching radiance in the LWIR is given by 

   (1) 

where  is the upwelling radiance,  is the downwelling radiance,  is atmospheric path 
transmission,  is emissivity,  and  is the radiance of a blackbody at temperature .8 The process 
of atmospheric compensation seeks to estimate the transmission, upwelling, and downwelling (TUD) 
components of this model. Five different AC methods are used in this analysis, all of which utilize 
MODTRAN or a similar radiative transfer tool to generate TUD estimates. The methods used include: 

1. MODTRAN (MOD): Simple MODTRAN simulation using known sensor altitude, band centers, 
band widths, and assuming mid-latitude summer atmospheric model. 

2. FLAASH-IR (FLA): Algorithm using MODTRAN with known sensor altitude, band centers, band 
widths with an optimization procedure for water vapor, temperature, and ozone profiles to reduce fit 
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error.4 

3. NOMADS (NOM): Algorithm using MODTRAN with known sensor altitude, band centers, band 
widths, and using numerical weather prediction data obtained from the National Oceanic and 
Atmospheric Administration (NOAA) Operational Model Archive Distribution System 
(NOMADS).5, 10 

4. AFRL-1: Experimental AFRL method using MODTRAN and concepts similar to FLAASH- IR. 

5. AFRL-2: Experimental AFRL method using alternative radiative transfer modeling and concepts 
similar to FLAASH-IR. 

Several data transformations are used in this study that strive to bring the data and target signature into the 
same domain in order to permit target detection. One method is conversion of the radiance data cube to 
emissivity space.  Given TUD estimates, conversion to emissivity requires   a temperature estimate for each 
data pixel. While this approach can be effective, it is also computationally demanding. An alternative method 
referred to as the alpha-residuals (AR) transform applies a mathematical manipulation to the data using a 
couple of simplifying assumptions. 

As an alternative to converting the data to emissivity space, the target signature can be converted to radiance 
space for target detection purposes.  Given TUD estimates, one must choose a target temperature in order to 
generate the target radiance signature. A simple approach is to assume the target temperature will be close to 
the ground temperature. An approximate ground temperature can be obtained for near-blackbody 
background materials by selecting the maximum apparent spectral temperature (AST) of the mean 
background radiance from the scene after converting to ground-leaving radiance.8 

To limit detection performance losses resulting from an inaccurate target temperature estimate, a target 
signature subspace can be generated. Given accurate TUD estimates, a target radiance subspace can be 
generated by modeling many realizations of the same target over a wide temperature range and performing a 
singular value decomposition (SVD) on the resulting data to obtain basis vectors describing the linear 
subspace.9 

The methods applied for this study are summarized below. 

1. Max-smoothness algorithm (MSA): Convert data cube to emissivity space using TUD estimates  
with  max-smoothness algorithm.11 

2. Alpha Residuals-1 (AR-1): Emissivity estimate derived from alpha residual transform.12 

3. Alpha Residuals-2 (AR-2): Emissivity estimate derived from modified alpha residual transform.13 

4. Apparent Spectral Temperature (AST): Convert target emissivity to radiance domain using TUD 
estimates and temperature estimate obtained from maximum AST of the mean background after 
conversion to ground-leaving radiance. 

5. Target subspace generation (only for subspace detectors): Generate target radiance signatures 
over a temperature range and determine subspace using SVD. 

Several detection algorithms are examined in this work to test relative robustness with respect   to TUD 
estimates and emissivity/signature estimates. ACE and SMF are two signature-matched detectors which the 
data can be in 1) emissivity space (using MSA), 2) radiance space (using AST), or 3) emissivity derived from 
alpha-residuals space (using AR-1 or AR-2).

14 
The subspace detectors examined here include subspace ACE 
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(ssACE), joint subspace detector (JSD), and adaptive subspace detector (ASD).14 For this work, the 
background subspace matrix is obtained using the leading ten eigenvectors of the scene sample covariance 
matrix 

3. RESULTS 

The various combinations of AC, emissivity retrieval, and detection algorithms are applied to the data sets 
with results summarized below. Due to the large number of combinations examined, example cases are 
shown and total results are summarized in tabular form. Example results of TUD and emissivity estimates 
can be found in the associated reference.14 

Various performance metrics are examined here, including receiver operating characteristic (ROC) curves, 
signal-to-clutter (SCR) ratio and number of false alarms (FAs) at a given probability of detection (Pd).  For a 
single data cube and a single target material, 55 different combinations of AC, TES, and detection algorithms 
exist.   Having examined 9 data cubes and 5 targets, a   total 2,475 detection results were produced. Example 
ROC curves are shown in Figure 2 for the sandpaper, mid-E, and foamboard target materials for all 55 
combinations of algorithms using the same data cube. These targets are selected to range across easier 
(foamboard) and more challenging (sandpaper) to detect. The area under curve (AUC) is computed for each 
case and the minimum, median, and maximum curves are highlighted. In this example, the ACE and SMF 
algorithms tend to outperform the subspace methods for all targets. Additionally, lower variability in 
detection performance is observed for the easier foamboard target material.  
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Figure 2: Comparison of ROC curves for various methods 

SCR and FA metrics are used to summarize results over all data cubes and targets. The FAs are computed 
for a probability of detection of 0.5. To summarize all 2,475 results, the SCR and FA were computed by 
averaging over all targets and data cubes for each AC, TES and detection algorithm. 

Table 2 shows the SCR scores for the ACE detection algorithm for all combinations of AC and TES 
algorithms averaged over all data cubes. In this case, the combination of FLAASH-IR with AST 

appears to provide the best overall performance for ACE in terms of SCR. Additionally, the average 
performance for each target suggests sandpaper is the most difficult to detect while foamboard is the easiest. 

Due to the nature of the detection algorithms (linear vs. quadratic, subspace, etc.), direct com- parison of 
SCR does not necessarily directly correlate to relative detection performance. As such, the normalized SCR 
is used to provide a relative comparison of which AC-TES combination tends to achieve the highest average 
performance for each detection algorithm. Table 3 displays the av- erage normalized SCR for each detection 
algorithm over all data cubes and all targets. Again, the FLAASH-AST combination demonstrates the best 
average SCR performance for both ACE and SMF. No clear trends are apparent for the subspace-based 
detection algorithms. 

To provide a more direct comparison of detection performance between algorithms, a FA metric is used. 
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Table 4 provides average FAs over all data cubes for the ACE algorithm for each target.   The combination 
of AFRL-2 and AST produces the lowest average FAs.   However, the   FA performance for FLAASH-AST 
is comparable and a correlation exists between SCR and FAs. Table 5 displays the average FAs for all 
algorithms over all targets and data cubes. Again, the lowest average FAs result from the combination of 
AFRL-2 and AST although the FLAASH-AST combo is comparable. The ACE algorithm produces the 
lowest FAs overall for the best AC-TES combination. However, it is worth noting that for many other “non-
optimal” combinations, SMF produces fewer FAs. This suggests that SMF is a bit more robust than ACE to 
target signature mismatch as the FAs for ACE can grow quickly if a sub-optimal signature is used. The 
subspace methods tend to produce a much larger number of FAs with ssACE producing the fewest within 
this class of algorithm. 

Finally, detection performance as a function of data cube is examined. Figure 3 displays nor- malized 
average SCR and FAs for each data cube for each AC method where the average is taken over all detection 
algorithms, TES methods, and targets. In general, detection performance drops considerably for the 
nighttime data, most likely due to reduced contrast due to thermal equilibrium and lower signal levels due to 
reduced temperature. Cloud cover appears to reduce performance in some cases as well 

4.  CONCLUSIONS 

This work attempts to compare different combinations of AC, TES and detection algorithms to assess 
robustness with respect to operating altitude, time of day, weather conditions, and target material. General 
trends noted superior performance using some combination of FLAASH-IR or AFRL-2 methods for AC and 
MSA or AST for TES. In all combinations, it is clear that all algo- rithms deteriorate for nighttime 
conditions. Future work should continue to expand this study to various sensors, backgrounds, and target 
types 
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Figure 3:  Comparison of SCR and FA of each datacube 
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